Research

Overview

Companies can enter the proposed program through two forms of membership: Gold sponsors are companies that support focused research projects of defined scope and provide funding in significant excess of the sponsor fee mentioned below.

Benefits of gold membership include:

  • Active participation in focused collaborative research projects.
  • Timely deliverables in the form of progress reports, software code, and reproducible computational experiments.
  • All benefits of the regular sponsorship described below.

Regular sponsors are companies that support the program by a sponsor fee of $60,000 per year.

Benefits of regular membership include:

  • Invitation to sponsor meetings, where research results are delivered in the form of oral presentations and where company representatives get the chance to interact with students and research personnel.
  • Access to publication preprints, complete with open-source software code and reproducible computational experiments.

Prospective sponsors should contact sergey.fomel@beg.utexas.edu


Current Projects

Dark Fiber Studies for Passive Monitoring in the Gulf Coast

We are excited to launch a new initiative that leverages existing dark fiber networks for continuous passive seismic monitoring along the Gulf Coast. This project will utilize both onshore and offshore fiber networks to monitor subsurface changes with high temporal resolution. Our primary goals include detecting seismic events, imaging subsurface structures, and tracking temporal changes in seismic properties using passive seismic interferometry.

Additionally, we will benchmark dark fiber data against traditional broadband seismometers, such as those used in the TexNet network. This study is expected to span up to two years, with one year of active recording in the Gulf Coast region. Current TCCS members can participate through optional tiers, with the first meeting and updates expected in Fall 2024.

Welcoming New and Existing Sponsors

While we are grateful for the continued support of our existing sponsors, we are also excited to invite new sponsors to join TCCS and participate in our Dark Fiber Studies. All are welcome to be part of this innovative initiative, helping to drive forward new discoveries in passive seismic monitoring.

For more details, please feel free to reach out to Andrey (andrey.bakulin@beg.utexas.edu) or Sergey (sergey.fomel@beg.utexas.edu).

 

Completed Projects

Statoil

Using deep learning to accelerate time-lapse seismic data inversion workflow for reservoir parameter estimation in carbon dioxide and sequestration studies

Statoil

Machine Learning for passive signal de-noising and arrival picking

Statoil

Pore pressure monitoring of a hydraulic fracture using reflection seismic data

Statoil

Seismic characterization and imaging of mobile shale

Statoil

Deep Learning based workflow for simultaneously interpreting 3-D seismic horizons and faults

Statoil

Deep learning for velocity model building with common image gather volumes

Statoil

Elastic Multi-Parameter Waveform Inversion for Subsalt Imaging

Statoil

Path-Integral Seismic Diffraction Imaging of Fractured Shale Reservoirs

Statoil

Characterization of Fractured Shale Reservoirs Using Anelliptic Parameters

Statoil

Lowrank Reverse Time Migration for Subsalt Imaging

BP

Phase Correction of Prestack Seismic Data Using Local Attributes

We develop a novel method for correcting prestack migration gathers for variable phase rotations. Our approach uses specially constructed local attributes, such as local kurtosis and local skewness.

University of Adelaide

High-Resolution Imaging of the Barrolka Dataset Using Diffraction Attributes

We develop a novel method for high-resolution seismic reservoir characterization and to apply it to a dataset acquired by Santos in Barrolka gas field in Australia. Our approach uses diffraction imaging attributes.

Kaust

Seismic Wave Focusing for Subsurface Imaging and Enhanced Oil Recovery

Our research focuses on the concept of inversion for seismic sources. Two problems sharing similar characteristics are targeted, one with direct application to imaging and a second one with direct application to enhanced oil recovery (EOR). In the imaging application, the sources could be the very scattering caused by the changes in the velocity with position, which, in seismic exploration terms, is represented by a seismic image. The seismic sources we want to invert for could also very well be the actual sources that are used to generate the initial wavefield. In both cases, wave propagation is guided by the wave equation, and in both cases the optimization procedure is guided by a fitting or shaping procedure. To implement an accurate inversion for the actual wave generating sources, we must first solve the problem for the secondary (reflection) type of sources. Thus, a reliable seismic wave focusing approach is needed for subsurface imaging. In the EOR application, wave generating sources are sought that would maximize a prescribed outcome at the reservoir. The prescribed outcome, which is user-defined and reservoir-specific, aims at increasing the mobility of otherwise entrapped oil, and thus increase production rates or revitalize thought-as-depleted reservoirs. Guided by the maximization goal (e.g. kinetic energy or fluid accelerations), an optimization problem must be solved to arrive at the optimal wave source signal and location to attain the sought outcome. At the heart of these problems is the physics of wave propagation through highly heterogeneous elastic or poro-elastic media, which through various formulations can be geared to serve the prescribed objectives in an optimal way.

Statoil

Extracting Seismic Events by Predictive Painting and Time-Warping

We are developing a new technology for extracting the geometry of seismic events in migrated images and gathers. The extracted information is useful both for structural seismic interpretation and for seismic velocity estimation.

Our method is based on the technique of predictive painting (Fomel, 2008; 2010) combined with time-warping (Burnett and Fomel, 2009).

Statoil

Waveform Tomography with Cost-function in the Image Domain

Shell

High-resolution Seismic Attributes for Fracture Characterization in Grosmont Formation

We are developing novel technology for high-resolution seismic reservoir characterization with application to high-resolution seismic data acquired by Shell in the heavy-oil Grosmont formation. Our approach uses novel scattering attributes defined by diffraction imaging in the dip-angle domain. Our research team includes geophysicists, structural geologists, and applied mathematicians, with a strong history of interdisciplinary research collaboration.

 

RPSEA

Multiazimuth Seismic Diffraction Imaging for Fracture Characterization in Low-Permeability Gas Formations

The goal of this project is to create a new technology for fracture detection using seismic diffraction imaging and to test it against realistic fracture patterns. We also aim to perfect sidewall-core and wireline-based methods and to use them for verifying the new seismic method.

Saudi Aramco, Kaust

Rapid Travel Time Solutions for Near Surface Velocity Estimation

Saudi Aramco, Zterra

Fast beam migration

We are developing a new technology for wide-azimuth Fast Beam Migration (FBM), a super-efficient seismic imaging algorithm. The faster imaging step allows for more iterations of velocity model building, which enable the processing team to enhance the seismic resolution and imaging of complex geologic structures, and allows for deeper data penetration, steeper dip and sub-salt structure imaging. This advanced imaging methodology will improve success rate and cost effectiveness for new deep-field discoveries, greatly reduce the turnaround time for large surveys, and also have applications in increasing recovery efficiency for the development of existing fields.

BGP

Enhanced Seismic Imaging of Land Data

We are developing a new technology for seismic imaging of land data. Two major improvements come from enhancing residual static correction through the use of the predictive painting algorithm and enhancing time-to-depth conversion and interval velocity estimation through the use of the time-to-depth conversion algorithm that takes into account lateral velocity variations.

Hess, Total

Subsalt Seismic Imaging Using Levelset Methods

We develop new numerical algorithms applicable for seismic imaging in complex subsalt environments, such as the Gulf of Mexico. The first algorithm is fast multiple-arrival traveltime computation in the phase-space domain extended to wave propagation and imaging with the oriented wave equation. The second algorithm is a semi-automatic extraction of salt bodies from seismic images using levelset surface representations.

 

Oden Institute

Dr. Sergey B. Fomel

Dr. Sergey B. Fomel

Email: sergey.fomel@beg.utexas.edu

Telephone: 512-475-9573

Aramco

 

BP

 

Chevron

 

ConocoPhillips

 

 

ExxonMobil

 

Petrobras

 

Riped

 

Sinopec

 

TGS

© Bureau of Economic Geology | Web Privacy Policy | Web Accessibility Policy