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Background

Common misconceptions:

• Open-source software (OSS) is 
incompatible with the activity of a 
commercial software and 
services company at high levels 
of the solutions stack

• Open-source package <insert 
name here> currently provides a 
complete solution  and should be 
used exclusively
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Overview

We will:

• Show that open-source 
software can be highly useful 
in a commercial software 
company

• Discuss the fundamental relative advantages and the 
“ecological niche” of SU, SEPlib, Madagascar and 
CPSeis in Fusion's software and services environment

• Discuss architecture improvements that can benefit 
some packages 
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OSS usage

• The “hand tools” of the 
software developer and of the 
command-line user

• Most of the time used as 
standalone programs

• When used as programming 
framework it is most often for 
prototyping

• In production only in a few 
particular cases
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Why is it used at all?
(1) Because people are usually already 

familiar with it when they start in a new 
job

- Then, they teach their co-workers 
how to use their tools

• Retraining is expensive

• Learning a new set of tools is more than reading a 
manual or reference

• “The young man knows the rules, the old man knows 
the exceptions”

• Smart people value portable knowledge
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Why is it used at all?

(2) Because it has usually fewer bugs 
than custom proprietary frameworks

- Why? # of users (and developers) 
vs. # of lines of code

- “Many eyes make all bugs 
shallow”: actually works when most 
users are also coders
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Why is it used at all?

(3) Because it has usually better 
documentation than custom proprietary 
frameworks

- Again: # of users (and developers) 
/ # of lines of code

- Google beats any in-house search 
engine

- Wikis make it easy for users to 
contribute to documentation
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Why is it used at all?

(4) Because its portability means easier technology 
transfer from external collaborators who use it

- No more porting software

- Interns and new hires can be productive from 
day 1
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Is it OK to mix and match?

OSS and proprietary software?

• ... BSD-style licensed packages (SU, 
SEPlib): Yes, minimal issues

• ... GPL-ed packages (Madagascar): Yes, as long as all:

– Calls take place over the public interface (no linking 
occurs)

– No code copying occurs

• There is no point to re-write in-house a commodity tool, if 
a satisfactory, stable OSS one exists

• Cheaper to contribute improvements upstream than to 
maintain a fork or to write an in-house version
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Why is it not used more?

• Because of its limitations.

• SU/SEPlib/Madagascar: optimized for 
ease of use and flexibility, not data volume

– This is not a bad thing! Just a different 
animal

• CPSeis: its “assign IP rights to CoP if you 
want to participate in public development” 
Contributor Agreement clause precludes 
the existence of a large, active open-
source community
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The data volume issue

• When input data is 20Tb, it becomes crucial to avoid 
making copies of the data and/or re-sorting it

  Academic OSS packages                   Big data
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Large datasets discussion

Filter-type processing program structure:

• “p” step: I/O parameters check

– Preempts dimension / axis type / data type mismatches

• “a” step: allocation

– A “work array” ensemble gets allocated

• “b” step: Actual computation

– Loop reading from input into the work array, process, output

• “c” step: cleanup

– deallocation, closing files, etc.
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Large datasets discussion

When chaining together multiple filters, the flow can proceed as:

– p1-a1-b1-c1 | p2-a2-b2-c2 | p3-a3-b3-c3

• SU/SEPlib/Madagascar (“standalone-style”)

• Easy debugging – just redirect output to file / graphics

– p1-p2-p3 -> a1-a2-a3 -> b1-b2-b3 -> c1-c2-c3

• “Flow-based” style

• Arco Benchmarking Suite/JavaSeis/CPSeis/GeoPRO

• “p” step ensures no I/O mismatch error will occur midway 
through the flow

• “a” step is done only once

• “b” step can take days -- no need to keep pipes open for 
days and to access disk outside the I/O to the flow
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Flow-based architectures

• Superior for very large-scale preprocessing

• Work style: try various flow parameters on a data subset, then 
apply to entire volume

• Very suited for “canned” flows, in which the sequence of steps is 
the same, and some steps may be skipped, parameters may be 
varied, but sequence remains the same

• Attempts to use standalone-style (SU/SEPlib/m8r) architecture 
for preprocessing converge into the writing of one large 
monolithic utility that implements a flow... without the 
maintainable modularity of a flow-based architecture.

• Flows rarely used for expensive imaging algorithms, for which 
collect-and-QC steps are usually needed both before and after.
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Standalone-style architectures 

• Thankfully, many problems in seismic imaging are data-parallel

• Standalone-style works well with external parallelization 
managers, which can also take care of queuing systems, 
restart in case of failure, etc:

– Madagascar's Flow(split=), sfomp, sfmpi

– CWP iTeam's Fork/Join

– UBC's SlimPy

– Fusion's Overlord

– Apache Pig

– Many others
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Standalone-style architectures 

For large problems, need:

• Parameters to act on a subset of input, instead of running a 
separate windowing program

• Utilities that are flexible about data ordering in input, in order to 
eliminate re-sorting of data just to fit a program written a certain 
way.

• Domain decomposition across nodes (MPI) for problems too 
large to fit in memory

• Exploiting all the CPUs on a node with OMP

• Checkpointing

• Multiple levels of logging verbosity
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Standalone-style suites – relative differences

Seismic Unix

• Many utilities for 
preprocessing, 
especially 
irregularly-sampled 
data handling

• Few bugs (large 
user base)

• Stable

• Data format more 
suited to 
preprocessing than 
imaging

Madagascar

• Few bugs (test-
driven!), 
maintainable, 
portable, active 
community

• Still evolving towards 
better functionality 
and even higher 
robustness, 
portability and 
maintainability (this is 
good, but less stable)

SEPlib

• Stable, but 
buggy (small 
user base)

• Irregularly-
sampled data 
handling in RSF-
compatible 
format

• Backwards 
compatibility with 
legacy imaging 
workflows
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Dual architectures 

• Is it possible to use the same codebase in both flow-mode 
and standalone-mode?

• Yes, if the code is structured in p-a-b-c subroutines, which can 
be placed in a library, then either:

– (A) Organized into flows as needed by a driver 
automatically written by the flow builder, which then gets 
compiled and executed

– (B) Called by an already-written standalone driver

– The standalone driver is boilerplate code that many similar 
programs share. A lot of non-geophysics in it (OMP 
parallelization, for example)

– Write only one driver, and pass it the name of the 
procedure to be run and its specific arguments. This can 
cut down dramatically on the # of executables (~800 in 
Madagascar!!). Less boilerplate code == good thing.

• Example: CPSeis Front End (CFE)



  

Other dual-architecture benefits
The “p” gatekeeper  forces registration of 
parameters and I/O axes/dimensions (where 
this makes sense)

– The I/O dimensions and the parameter list (for self-doc) can be 
obtained by executing “p” with a certain flag, instead of having to 
parse the driver (m8r-style) and to hope the user did not move 
reading of parameters into some subroutine, for code reuse

– The user can still reuse code and put parameter reading in shared 
procedures, as long as they pass to “p” the resulting object

– The parameters are read only once, with a single default value. 
Allowing the parameter table to be read from anywhere, SEPlib-
style, can lead to some interesting bugs

– Example of parameter registration that results in guaranteed-
complete self-doc: Python's argparse module
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Other dual-architecture benefits

Forces separation of concerns

• Domain logic (i.e. geophysics) “lives” in the ”b” procedure

• The “b” procedure is independent from input data format

– Inter-package code reuse, by simple linking with another library!

• Procedures are forced to live in libraries

– Code reuse done right, instead of

• copy/paste

• copying source code files between directories

• creating Unix symlinks
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Fusion's solution
• Use SU/SEPlib/Madagascar/CPSeis:

– As “hand tools” according to individual preferences

– Integrated into GeoPRO's Flow Builder

– Mainly for preprocessing

• Use standalone imaging programs managed by a fault-
tolerant, PBS-compatible, Python-based parallelization 
manager (Overlord)

• Some of these standalone programs can be from 
Madagascar, SEPlib or SU. 

– Example: sffkamo parallelized by a wrapper script called 
by Overlord
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GeoPRO Flow Builder mix & match 
example

21/32



  22/32



  

Mix processing modules as needed!

GeoPRO

SU

CPSeis
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CPSeis 
Modules

SU 
Modules
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CPSeis Module 
Parameter UI
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CPSeis 
Module 
Help
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SU Module 
Parameter UI
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SU 
Module 
Help
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Visualization in VizPRO (movie)
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How about other OSS packages?

• We only talked about what we were familiar with

• This workshop discusses other packages as well

• Wikipedia's List of free geophysics software lists many 
more packages yet

• We are always looking forward to learning new things

• This is a big reason why we are attending this workshop

30/32

https://secure.wikimedia.org/wikipedia/en/wiki/List_of_free_geophysics_software


  

Conclusions

• Various architectures and packages provide specific 
benefits

– It is up to the user to mix, match and adapt 
according to his needs

• Dual-style architectures offer the convenience of 
standalone programs combined with the ability to 
process industrial-sized data volumes

• Open-Source Software is compatible 
and useful in the activity of a services 
and software company
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