

Open-source software usage in a
geophysical software and

services company

Ioan Vlad and Charles Kovacs
Fusion Petroleum Technologies, Inc.

PTTC Workshop, Houston, TX, 2011-06-17

Background

Common misconceptions:

• Open-source software (OSS) is
incompatible with the activity of a
commercial software and
services company at high levels
of the solutions stack

• Open-source package <insert
name here> currently provides a
complete solution and should be
used exclusively

1/32

Overview

We will:

• Show that open-source
software can be highly useful
in a commercial software
company

• Discuss the fundamental relative advantages and the
“ecological niche” of SU, SEPlib, Madagascar and
CPSeis in Fusion's software and services environment

• Discuss architecture improvements that can benefit
some packages

2/32

OSS usage

• The “hand tools” of the
software developer and of the
command-line user

• Most of the time used as
standalone programs

• When used as programming
framework it is most often for
prototyping

• In production only in a few
particular cases

3/32

Why is it used at all?
(1) Because people are usually already

familiar with it when they start in a new
job

- Then, they teach their co-workers
how to use their tools

• Retraining is expensive

• Learning a new set of tools is more than reading a
manual or reference

• “The young man knows the rules, the old man knows
the exceptions”

• Smart people value portable knowledge

4/32

Why is it used at all?

(2) Because it has usually fewer bugs
than custom proprietary frameworks

- Why? # of users (and developers)
vs. # of lines of code

- “Many eyes make all bugs
shallow”: actually works when most
users are also coders

5/32

Why is it used at all?

(3) Because it has usually better
documentation than custom proprietary
frameworks

- Again: # of users (and developers)
/ # of lines of code

- Google beats any in-house search
engine

- Wikis make it easy for users to
contribute to documentation

6/32

Why is it used at all?

(4) Because its portability means easier technology
transfer from external collaborators who use it

- No more porting software

- Interns and new hires can be productive from
day 1

7/32

Is it OK to mix and match?

OSS and proprietary software?

• ... BSD-style licensed packages (SU,
SEPlib): Yes, minimal issues

• ... GPL-ed packages (Madagascar): Yes, as long as all:

– Calls take place over the public interface (no linking
occurs)

– No code copying occurs

• There is no point to re-write in-house a commodity tool, if
a satisfactory, stable OSS one exists

• Cheaper to contribute improvements upstream than to
maintain a fork or to write an in-house version

8/32

Why is it not used more?

• Because of its limitations.

• SU/SEPlib/Madagascar: optimized for
ease of use and flexibility, not data volume

– This is not a bad thing! Just a different
animal

• CPSeis: its “assign IP rights to CoP if you
want to participate in public development”
Contributor Agreement clause precludes
the existence of a large, active open-
source community

9/32

The data volume issue

• When input data is 20Tb, it becomes crucial to avoid
making copies of the data and/or re-sorting it

 Academic OSS packages Big data

10/32

Large datasets discussion

Filter-type processing program structure:

• “p” step: I/O parameters check

– Preempts dimension / axis type / data type mismatches

• “a” step: allocation

– A “work array” ensemble gets allocated

• “b” step: Actual computation

– Loop reading from input into the work array, process, output

• “c” step: cleanup

– deallocation, closing files, etc.

11/32

Large datasets discussion

When chaining together multiple filters, the flow can proceed as:

– p1-a1-b1-c1 | p2-a2-b2-c2 | p3-a3-b3-c3

• SU/SEPlib/Madagascar (“standalone-style”)

• Easy debugging – just redirect output to file / graphics

– p1-p2-p3 -> a1-a2-a3 -> b1-b2-b3 -> c1-c2-c3

• “Flow-based” style

• Arco Benchmarking Suite/JavaSeis/CPSeis/GeoPRO

• “p” step ensures no I/O mismatch error will occur midway
through the flow

• “a” step is done only once

• “b” step can take days -- no need to keep pipes open for
days and to access disk outside the I/O to the flow

12/32

Flow-based architectures

• Superior for very large-scale preprocessing

• Work style: try various flow parameters on a data subset, then
apply to entire volume

• Very suited for “canned” flows, in which the sequence of steps is
the same, and some steps may be skipped, parameters may be
varied, but sequence remains the same

• Attempts to use standalone-style (SU/SEPlib/m8r) architecture
for preprocessing converge into the writing of one large
monolithic utility that implements a flow... without the
maintainable modularity of a flow-based architecture.

• Flows rarely used for expensive imaging algorithms, for which
collect-and-QC steps are usually needed both before and after.

13/32

Standalone-style architectures

• Thankfully, many problems in seismic imaging are data-parallel

• Standalone-style works well with external parallelization
managers, which can also take care of queuing systems,
restart in case of failure, etc:

– Madagascar's Flow(split=), sfomp, sfmpi

– CWP iTeam's Fork/Join

– UBC's SlimPy

– Fusion's Overlord

– Apache Pig

– Many others
14/32

Standalone-style architectures

For large problems, need:

• Parameters to act on a subset of input, instead of running a
separate windowing program

• Utilities that are flexible about data ordering in input, in order to
eliminate re-sorting of data just to fit a program written a certain
way.

• Domain decomposition across nodes (MPI) for problems too
large to fit in memory

• Exploiting all the CPUs on a node with OMP

• Checkpointing

• Multiple levels of logging verbosity

15/32

Standalone-style suites – relative differences

Seismic Unix

• Many utilities for
preprocessing,
especially
irregularly-sampled
data handling

• Few bugs (large
user base)

• Stable

• Data format more
suited to
preprocessing than
imaging

Madagascar

• Few bugs (test-
driven!),
maintainable,
portable, active
community

• Still evolving towards
better functionality
and even higher
robustness,
portability and
maintainability (this is
good, but less stable)

SEPlib

• Stable, but
buggy (small
user base)

• Irregularly-
sampled data
handling in RSF-
compatible
format

• Backwards
compatibility with
legacy imaging
workflows

16/32

Dual architectures

• Is it possible to use the same codebase in both flow-mode
and standalone-mode?

• Yes, if the code is structured in p-a-b-c subroutines, which can
be placed in a library, then either:

– (A) Organized into flows as needed by a driver
automatically written by the flow builder, which then gets
compiled and executed

– (B) Called by an already-written standalone driver

– The standalone driver is boilerplate code that many similar
programs share. A lot of non-geophysics in it (OMP
parallelization, for example)

– Write only one driver, and pass it the name of the
procedure to be run and its specific arguments. This can
cut down dramatically on the # of executables (~800 in
Madagascar!!). Less boilerplate code == good thing.

• Example: CPSeis Front End (CFE)

Other dual-architecture benefits
The “p” gatekeeper forces registration of
parameters and I/O axes/dimensions (where
this makes sense)

– The I/O dimensions and the parameter list (for self-doc) can be
obtained by executing “p” with a certain flag, instead of having to
parse the driver (m8r-style) and to hope the user did not move
reading of parameters into some subroutine, for code reuse

– The user can still reuse code and put parameter reading in shared
procedures, as long as they pass to “p” the resulting object

– The parameters are read only once, with a single default value.
Allowing the parameter table to be read from anywhere, SEPlib-
style, can lead to some interesting bugs

– Example of parameter registration that results in guaranteed-
complete self-doc: Python's argparse module

18/32

Other dual-architecture benefits

Forces separation of concerns

• Domain logic (i.e. geophysics) “lives” in the ”b” procedure

• The “b” procedure is independent from input data format

– Inter-package code reuse, by simple linking with another library!

• Procedures are forced to live in libraries

– Code reuse done right, instead of

• copy/paste

• copying source code files between directories

• creating Unix symlinks

19/32

Fusion's solution
• Use SU/SEPlib/Madagascar/CPSeis:

– As “hand tools” according to individual preferences

– Integrated into GeoPRO's Flow Builder

– Mainly for preprocessing

• Use standalone imaging programs managed by a fault-
tolerant, PBS-compatible, Python-based parallelization
manager (Overlord)

• Some of these standalone programs can be from
Madagascar, SEPlib or SU.

– Example: sffkamo parallelized by a wrapper script called
by Overlord

20/32

GeoPRO Flow Builder mix & match
example

21/32

 22/32

Mix processing modules as needed!

GeoPRO

SU

CPSeis

23/32

CPSeis
Modules

SU
Modules

24/32

CPSeis Module
Parameter UI

25/32

CPSeis
Module
Help

26/32

SU Module
Parameter UI

27/32

SU
Module
Help

28/32

Visualization in VizPRO (movie)

29/32

How about other OSS packages?

• We only talked about what we were familiar with

• This workshop discusses other packages as well

• Wikipedia's List of free geophysics software lists many
more packages yet

• We are always looking forward to learning new things

• This is a big reason why we are attending this workshop

30/32

https://secure.wikimedia.org/wikipedia/en/wiki/List_of_free_geophysics_software

Conclusions

• Various architectures and packages provide specific
benefits

– It is up to the user to mix, match and adapt
according to his needs

• Dual-style architectures offer the convenience of
standalone programs combined with the ability to
process industrial-sized data volumes

• Open-Source Software is compatible
and useful in the activity of a services
and software company

31/32

Acknowledgments

• Doug Hanson for details about CPSeis

• Tom Stoeckley for details about CPSeis and
presentation feedback

• Fusion Petroleum Technologies for allowing the
presentation of this material

• Fotolia, Wikimedia Commons and other image sites for
illustrations

32/32

	Imaging Algorithms Status
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33

