
TCCS members will make several 
presentations at IMAGE 2023 in Houston.  
The presentations fall into several  
subject areas: Acquisition, Borehole, Full-
Waveform Inversion, Machine Learning  
and Data Analytics, Seismic Processing,  
and Seismic Modeling and Theory.
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Welcome to the 26th 
TCCS Newsletter!
The Texas Consortium for 
Computational Seismology  
is a joint initiative of the 
Bureau of Economic Geology 
(BEG) and the Oden Institute 
for Computational Engineering 
and Sciences at The University 
of Texas at Austin. It’s mission 
is to address the most critical 
and challenging research 
problems in computational 
geophysics as experienced 
by the energy industry while 
educating the next generation 
of research geophysicists and 
computational scientists.
  

The Fall 2023 Research Meeting 
of the Texas Consortium for 
Computational Seismology 
will take place in Austin on 
November 16–17. Hosted by  
the Bureau of Economic 
Geology, it will be held at The 
University of Texas at Austin,  
J.J. Pickle Research campus. 

Representatives of participating 
companies are invited to 
register for the meeting  
by following the link at  
http://tccs.beg.utexas.edu.

Fall Meeting

Presentations at IMAGE 2023
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1:20–1:45 Denoise and Deblend (SP P3) S. Fomel Plane-wave destruction beyond aliasing

1:45–2:10 Denoise and Deblend (SP P3) S. Fomel Revisiting stacking

1:45–2:10 Geomechanics and 
Geophysics (BH 3)

H. Corzo-Pola, S. Saleh 
and S. Fomel

Near-optimal well-log correlation 
sequences using reinforcement learning

2:35–3:00
Theoretical Developments in 
Seismic Modeling and Wave 
Phenomena 3 (SMT 3)

S. Fomel Autoregressive shaping regularization
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8:00–8:25 Low Carbon Solution (MLDA 5) R. Gao, S. Fomel and Y. Chen CO2 sequestration reservoir distribution 
evaluation with 4D seismic data

8:50–9:15 Cycle Skipping (FWI 3) T. Masthay and B. Engquist Optimal transport for elastic source inversion

1:20–1:45 Machine Learning for Wellbore 
Applications (BH P2)

J. Lee, Y. Chen, R. Dommisse, 
A. Savvaidis, and D. Huang

Predicting S-wave sonic logs using 
machine learning with conventional 
logs for the Delaware Basin, Texas
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2:35–3:00 Compressive Sensing and 
Novel Methods (ACQ 4) R. Abma and S. Fomel Extracting amplitudes lower than 

the natural receiver sensitivity

TCCS Sponsors

TCCS appreciates the support of its 2023 sponsors: Aramco, BP, Chevron, 
ConocoPhillips, ExxonMobil, Petrobras, PetroChina, Sinopec, and TGS.

In June 2023, Sergey Fomel participated in the natural  
language processing hackathon at the European Association 
of Geoscientists and Engineers (EAGE) 84th annual meeting.  
He teamed up with Steven Braun from Chevron, and their 
team won the Audience Choice Award. The team developed 
code that used the ChatGPT API to automatically extract 
keywords, produce summaries for almost 900 EAGE extended 
abstracts, and perform clustering data analysis based on the 
extracted keywords. The EAGE AI Committee organized the  
hackathon with AkerBP, Dell, Equinor, NVIDIA, and SLB sponsorship.

EAGE Hackathon

https://tccs.beg.utexas.edu
http://tccs.beg.utexas.edu
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Research Highlights

Tyler MasthayTyler Masthay has been working on applying optimal transport to elastic 
full-waveform inversion for source inversion. The Wasserstein-2 metric (W2) is 
attractive for full-waveform inversion due to its (a) convexity with respect to 
shifts and dilations and (b) its noise insensitivity. The figure demonstrates (a)  
and (b) through comparison of optimization landscapes for W2 and L2 misfits  

as functions of source location for a homogeneous medium. The plots show the misfit 
between seismograms of a forward simulation at a given location and a reference location 
of (50 km, 50 km), where we expect a global minimum. As follows from comparing the left and 
right columns, the W2 landscape is markedly more convex than the L2 landscape, demonstrating 
(a). Comparing the top and bottom rows, we see that L2 is sensitive to Gaussian additive noise; 
the global minimum is no longer captured. However, the W2 landscape remains stable under 
the additive Gaussian noise, underscoring the noise insensitivity property (b).

Raymond AbmaRaymond Abma has been working on extracting faint signals 
from detectors that would not naturally record such data. This 
idea was inspired by sign-bit seismic acquisition and has been 
extended to conventional seismic recording. Weaker signals 
disrupt stronger signals, and this disruption can be detected 
when using sources with longer time frames. Figure a shows  

a simulation of a strong source, while Figure b has a weak source that barely 
excites the detector. Correlating with a source with a long time extent and 
repeating the sources can produce results identical to those using a stronger 
source. While this has obvious applications to seismic exploration, these  
ideas were inspired by attempts to detect gravitational waves. 

Yangkang ChenYangkang Chen has developed a multifunctional open-source 
package called Pyekfmm for eikonal-based travel-time calculation 
in 2D and 3D heterogeneous anisotropic media based on the 
well-documented fast marching method. Unlike previous travel-
time calculation packages, Pyekfmm offers a seamless compilation 
of the backbone C programs in the Python environment through 

a state-of-the-art pip installation. As a result, users can use the Pyekfmm 
package for different scientific purposes with the convenience of Python 
interfaces and the efficiency offered by C programs. Importantly, Pyekfmm 
allows travel-time calculation in anisotropic media, enabling its exclusive 
applications in special cases with strong anisotropy. 

descent method to trace 11 rays from evenly distributed ver-
tical receivers to the source location for both the 2D and 3D
cases. The red stars correspond to the source locations. The
blue triangles correspond to the receiver locations. The green
dashed lines correspond to the rays. This example demon-
strates the effectiveness of pyekfmm package for generating
the ray paths given a set of receiver locations.

The fifth example is a global travel-time calculation exam-
ple. Figure 5a plots a global distribution of the surface-wave
travel time given an earthquake location (longitude 0°, latitude
−25°, and depth 0 km), assuming a globally constant surface-
wave velocity as 3.0 km/s. Figure 5b plots a depth-longitude
slice of the global P-wave travel-time table. The earthquake
source is assumed to be at latitude −25°, longitude 0°, and
depth 400 km. Including a heterogeneous 3D crust and mantle
velocity model is straightforward in the pyekfmm package.

The sixth example is a location test. In this example, we use
an example of the open-source NonLinLoc package (Lomax
et al., 2009). We generate the travel-time table using the
pyekfmm package for 80 stations and use the NonLinLoc
(NLL) method to locate six earthquake events in Alaska, and
compare those from the standard NonLinLoc travel-time calcu-
lation, which is based on finite difference scheme introduced in
Podvin and Lecomte (1991). The comparison of the location
results is shown in Figure 6, where we can see that the two loca-
tion results (NLL and FMM) are comparable, indicating the reli-
able travel-time calculation accuracy of the pyekfmm package.

The seventh example is a relocation test. In this example, we
reproduce the example of the Spanish Springs, Nevada, earth-
quake sequence in the GrowClust3D package (Trugman et al.,

2023). We generate the 3D
travel-time tables of 51 stations
and use that as the input for the
GrowClust method. As a result,
the catalog before and after
relocation show dramatic
differences as shown in
Figure 7. The relocated catalog
events show clusters that depict
the fault structures (Fig. 7b).
The cross section (A–A′) fur-
ther confirms the effectiveness
of relocation using the travel
time calculated from the
pyekfmm package.

The eighth example is a sur-
face-wave tomography test. We
use the 5 s group velocity map
of the Australian continent
from ambient noise imaging
(Chen et al., 2023). This model
is used to simulate the syn-
thetic travel times and ray

paths according to the distribution of actual station (virtual
source)–station pairs. Figure 8a shows the ray path of a sample
pair, and Figure 8b shows its corresponding travel-time field.
The presence of heterogeneous structures in the shallow crust
causes the bending of the ray paths (Fig. 8c). For example, in
South Australia, the majority of the ray paths are concentrated
within a relatively narrow high-velocity corridor near the
continental margin. A total of 25,899 travel times and ray paths
are computed for seismic tomography experiments. We invert
these synthetic travel times for velocity structures using a lin-
earized inversion method (Barmin et al., 2001). To set up the
inverse problem, we simulate the travel times for an initial
velocity model of constant velocity (Fig. 8d). The inversion
is then linearized by subtracting these predicted travel times
from the observed ones (i.e., those from the simulation with
the ground-truth velocity model in Fig. 8a). Compared with
the heterogenous model, the travel-time fronts produced with
a constant velocity model are of circular shape (Fig. 8e), and all
the ray paths follow the great circles (Fig. 8f). Travel-time
residuals are solved using the inversion kernel constructed
from the initial model. The inversion result well recovers
the input pattern of the large velocity variation across the con-
tinent (Fig. 9a). Small-scale structures are well resolved in the
region where the ray path density is high (e.g., southeastern
Australia). We also compute the predicted travel times from
the final model with our code package. Compared with the ini-
tial model, travel-time misfit decreases significantly from 4.3 to
0.9 s (Fig. 9b). This test indicates that our code package can be
used as a reliable forward modeling tool for travel-time-based
tomographic imaging.

(a) (b)

Figure 4. Ray tracing example in (a) 2D and (b) 3D media with vertically increasing velocities. The
color version of this figure is available only in the electronic edition.

Volume 94 • Number 4 • July 2023 • www.srl-online.org Seismological Research Letters 2055

Downloaded from http://pubs.geoscienceworld.org/ssa/srl/article-pdf/94/4/2050/5889046/srl-2023042.1.pdf
by University of Texas at Austin user
on 22 June 2023

(b)(a)

 

  

  
 

Rebecca GaoRebecca Gao utilizes fractal decomposition and deep learning 
to enhance geologic structure characterization from seismic 
images. The process comprises five steps: (1) preprocessing 
seismic images to accentuate geologic structures; (2) genera-
ting fractal images using Iterated Function Systems and 

labeling them with generating vectors; (3) applying fractal decomposition 
with wavelet-based multi-scale analysis to extract patterns; (4) developing  
a modified ResNet-based architecture to recognize geologic structures  
in decomposed images, training, and validating on a labeled natural  
image dataset; and (5) fine-tuning the model on labeled seismic datasets  
with delineated structures of interest. This approach capitalizes on the  
self-similar nature of fractals to capture complex patterns and improves 
geologic structure recognition accuracy and efficiency from seismic images.
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Y. Chen, A. Savvaidis, S. Fomel, Y. Chen, O. Saad, H. Wang, Y. Oboue, L. Yang, and W. Chen, 2023, Denoising of distributed acoustic sensing seismic data:  
Seismological Research Letters, accepted.

Z. Geng, S. Fomel, Y. Liu, Q. Wang, Z. Zheng, and Y. Chen, 2023, Streaming seismic attributes: Geophysics, accepted.
H. Kaur, J. Sun, M. Aharchaou, A. Baumstein, and S. Fomel, 2023, Deep learning framework for true amplitude imaging: Effect of conditioners and initial models:  

Geophysical Prospecting, accepted.
N. Pham and S. Fomel, 2023, Seismic data augmentation for automatic fault picking using deep learning: Geophysical Prospecting, accepted.
O. Saad , Y. Chen, A. Savvaidis, S. Fomel, X. Jiang, D. Huang, Y. Oboue, S. Yong , X. Wang, X. Zhang, and Y. Chen, 2023, Earthquake forecasting using big data and  

artificial intelligence: a 30-weeks real case study in China: Bulletin of the Seismological Society of America, accepted.
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Y. Chen, Y. Chen, S. Fomel, A. Savvaidis, O. Saad, and Y. Oboue, 2023, Pyekfmm: a python package for 3D fast-marching-based traveltime calculation and its applications in 
seismology: Seismological Research Letters, v. 94, 2050–2059.

Y. Chen and S. Fomel, 2023, 3D true-amplitude elastic wave-vector decomposition in heterogeneous anisotropic media: Geophysics, v. 88, C79–C89.
Y. Chen, S. Fomel, and R. Abma, 2023, Joint deblending and source time inversion: Geophysics, Geophysics, v. 88, WA27–WA35.
Y. Chen, A. Savvaidis, S. Fomel, Y. Chen, O. Saad, Y. Oboue, Q. Zhang, and W. Chen, 2023, Pyseistr: a python package for structural denoising and interpolation of  

multi-channel seismic data: Seismological Research Letters, v. 94, 1703–1714.
Y. Chen, A. Savvaidis, Y. Chen, O. Saad, and S. Fomel, 2023, Enhancing earthquake detection from distributed acoustic sensing data by coherency measure and  

moving-rank-reduction filtering: Geophysics, v. 88, WC13–WC23.
Y. Chen, A. Savvaidis, S. Fomel, Y. Chen, O. Saad, H. Wang, Y. Oboue, L. Yang, W. Chen, 2023, Denoising of distributed acoustic sensing seismic data using an integrated 

framework: Seismological Research Letters, v. 94, 457–472.
Y. Chen, A. Savvaidis, S. Fomel, O. Saad, and Y. Chen, 2023, RFloc3D: a machine learning method for 3D real-time microseismic source location using P- and S-wave arrivals: 

IEEE Transactions on Geoscience and Remote Sensing, v. 61, 5901310.
H. Kaur, S. Fomel, and N. Pham, 2023, Automated hyperparameter optimization for simulating boundary conditions for acoustic and elastic wave propagation using  

deep learning: Geophysics, v. 88, WA309–WA318.
H. Kaur, N. Pham, S. Fomel, Z. Geng, L. Decker, B. Gremillion, M. Jervis, R. Abma, and S. Gao, 2023, A deep learning framework for seismic facies classification:  

Interpretation, v. 11, T107–T116.
H. Kaur, Q. Zhang, P. Witte, L. Liang, L. Wu, S. Fomel, 2023, Deep learning based 3D fault detection for carbon capture and storage (CCS): Geophysics, v. 88, IM101–IM112.
O. Saad, S. Fomel, R. Abma, and Y. Chen, 2023, Unsupervised deep learning for 3D interpolation of highly incomplete data: Geophysics, v. 88, WA189–WA200.
L. Yang, S. Fomel, S. Wang, X. Chen, Y. Chen. 2023, Denoising distributed acoustic sensing (DAS) data using unsupervised deep learning: Geophysics, v. 88, V317–V332.
L. Yang, S. Fomel, S. Wang, X. Chen, W. Chen, O. Saad, and Y. Chen, 2023, Denoising of distributed acoustic sensing data using supervised deep learning: Geophysics,  

v. 88, WA91–WA104. 
L. Yang, S. Fomel, S. Wang, X. Chen, W. Chen, O. Saad, and Y. Chen, 2023, Porosity and permeability prediction using transformer and periodic long short term network: 

Geophysics, v. 88, WA293–WA308.
L. Yang, S. Wang, X. Chen, W. Chen, O. Saad, X. Zhou, N. Pham, Z. Geng, S. Fomel, and Y. Chen, 2023, High-fidelity permeability and porosity prediction using  

deep learning with the self-attention mechanism: IEEE Transactions on Neural Networks and Learning Systems, v. 34, 3429–3443.
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Y. Chen, O. Saad, A. Savvaidis, Y. Chen, and S. Fomel, 2022, 3D microseismic monitoring using machine learning: Journal of Geophysical Research—Solid Earth,  
v. 127, e2021JB023842.

L. Decker and S. Fomel, 2022, A probabilistic approach to seismic diffraction imaging: Lithosphere, v. 2021, 6650633.
L. Decker and S. Fomel, 2022, A variational approach for picking optimal surfaces from semblance-like panels: Geophysics, v. 87, U93–U108.
B. Engquist and Y. Yang, 2022, Optimal transport based seismic inversion: Beyond cycle skipping: Communications on Pure and Applied Mathematics, v. 75, 2201–2244.
Z. Geng, Y. Chen, S. Fomel, and L. Liang, 2022, LOUD: Local orthogonalization constrained unsupervised deep learning denoiser:  

IEEE Transactions on Geoscience and Remote Sensing, v. 60, 5924912.
Z. Geng, Z. Hu, X. Wu, and S. Fomel, 2022, Semi-supervised salt segmentation using mean teacher: Interpretation, v. 10, SE21–SE29.
Z. Geng, Z. Zhao, Y. Shi, X. Wu, S. Fomel, and M. Sen, 2022, Deep learning for velocity model building with common-image gathers: Geophysical Journal International,  

v. 228, 1054–1070.
G. Huang, X. Chen, O. Saad, Y. Chen, S. Fomel, A. Savvaidis, Y. Chen, 2022, High-resolution and robust microseismic grouped imaging and grouping strategy analysis: 

Geophysical Prospecting, v. 70, 980–1002.
H. Kaur, A. Sun, Z. Zhong, and S. Fomel, 2022, Time-lapse seismic data inversion for estimating reservoir parameters using deep learning: Interpretation, v. 10, T167–T179.
O. Saad, Y. Chen, A. Savvaidis, S. Fomel, and Y. Chen, 2022, Real-time earthquake detection and magnitude estimation using vision transformer:  

Journal of Geophysical Research—Solid Earth, v. 127, e2021JB023657.
O. Saad, Y. Chen, D. Trugman, M. S. Soliman, L. Samy, A. Savvaidis, M. A. Khamis, A. G. Hafez, S. Fomel, and Y. Chen, 2022, Machine learning for the fast and  

reliable source-location prediction in earthquake early warning: IEEE Geoscience and Remote Sensing Letters, v. 19, 8025705.
H. Wang, Y. Chen, O. Saad, W. Chen, Y. Oboue, L. Yang, S. Fomel, and Y. Chen, 2022, A Matlab code package for 2D/3D local slope estimation and structural filtering: 

Geophysics, v. 87, F1–F14.
H. Wang, Y. Yunfeng, Y. Oboue, R. Abma, Z. Geng, S. Fomel, and Y. Chen, 2022, Simultaneous reconstruction and denoising of extremely sparse 5D seismic data by a simple 

and effective method: IEEE Transactions on Geoscience and Remote Sensing, v. 60, 5909212.
S. Zu, H. Cao, S. Fomel, and Y. Chen, 2022, Robust local slope estimation by deep learning: Geophysical Prospecting, v. 70, 847–864.

Papers Accepted and Published 2022–2023 http://tccs.beg.utexas.edu/publications

http://tccs.beg.utexas.edu/publications
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TCCS Staff 

The TCCS group consists 
of researchers from 
seven different countries 
(China, Ghana, India, 
Mexico, Russia, Sweden 
and USA). Our research 
staff includes two 
principal investigators, 
research scientists,  
and students: 

Raymond Abma (Visiting Scientist)
Yangkang Chen (Research Scientist)
Hector Corzo Pola (Ph.D. 1st year)
Björn Engquist (PI) 

Rebecca Gao (Ph.D. 4th year)
Rui Gong (Ph.D. 1st year)
Sergey Fomel (PI)
Tyler Masthay (Ph.D. 7th year)

For more information, see http://tccs.beg.utexas.edu/staff.

Shirley Mensah (Ph.D. 1st year)
Akshika Rohatgi (Ph.D. 1st year)
Yiran Shen (Ph.D. 7th year)
Sujith Swaminadhan (Ph.D. 1st year)

20th anniversary of Madagascar and the Madagascar School in Mexico

Sergey Fomel started the 
Madagascar Open-Source Software 
Project at UT Austin in 2003 with 
support from multiple collaborators. 
The project became public in 2006  
with beta-version 0.9. In version 
4.0, Madagascar remains popular 
worldwide as a powerful tool for 
multidimensional data analysis 
and reproducible computational 
experiments. In the tradition of 
annual schools and workshops, the 

next Madagascar workshop will 
take place at the Annual Meeting 
of the Mexican Geophysical Union 
(RAUGM) in Puerto Vallarta,  
Mexico, Oct. 29–Nov. 3, 2023.  
Participants will receive an  
overview of the software 
fundamentals, guidance on 
processing seismic data using 
Madagascar, and instructions on 
seamlessly integrating Madagascar 
and LaTeX to publish their research.

50th anniversary of the Oden Institute

The Oden Institute for 
Computational Engineering and 
Sciences will celebrate 50 years 
of interdisciplinary research and 
education leadership with a full-day 
symposium. The symposium will be 

held at UT Austin’s Main  
Campus on September 21, 2023.  
For more information, visit  
https://oden.utexas.edu/ 
50th-anniversary/

Stampede3, a new supercomputer at TACC

The Texas Advanced Computing 
Center (TACC) recently announced 
Stampede3, a new powerful super-
computer enabling ground-breaking 
open science research projects. 
Made possible by a $10 million 
award for computer hardware from 
the NSF, the new system will be  
delivered in Fall 2023 and will go 
into production in early 2024.  
Stampede3 will provide a new  

4-petaflop capability 
for high-end simu-
lation and a new 
graphics processing 
unit/AI subsystem  
for AI/ML and other 
GPU-friendly applica-
tions for the total of  
1,858 computer nodes with more 
than 140,000 cores, more than  
330 terabytes of RAM, 13 petabytes  

  
of new storage, and almost  
10 petaflops of peak capability.

http://tccs.beg.utexas.edu/staff
https://oden.utexas.edu/50th-anniversary/
https://oden.utexas.edu/50th-anniversary/

